【内容推荐】画鬼容易画人难:用户画像的“能”和“不能”

做好一个推荐系统,总共分三步:

  1. 认识每一个用户;
  2. 给他推荐他感兴趣的东西;
  3. 坐等各项指标上升。

开个玩笑,如果这么简单的话,那么你和我都要失业了;但是话说回来,认识用户是必须的,不过不用担心,认识用户不用请他们吃饭,这就是我们常常听说的“用户画像”这个词。今天,我就来跟你聊一聊:用户画像的那些事儿。

【其他应用算法】构建一个科学的排行榜体系

前面的专栏文章中,我从最常见的内容推荐开始讲起,直到讲到了最复杂的深度学习在推荐系统中的应用原理,这些推荐算法都有一个特点:智能。

所谓智能,就是带有学习性质,能够和复杂的用户端形成互动,在互动过程中,算法参数得到更新和进化。

【其他应用算法】实用的加权采样算法

今天来讲一个非常轻松的话题,这个话题看似和推荐系统没什么关系,但肯定有用,只是在别的推荐系统相关话题里都没人会提。

一些场景

还记得前面讲到的用户画像吗?想象一个场景:你经过辛辛苦苦抓数据,清洗数据,收集用户行为,目的就是给用户计算兴趣标签。

【其他应用算法】推荐候选池的去重策略

今天依然要讲到两个问题,它们看似和推荐系统没有必然关系,但实际上,在你构建自己的推荐系统的时候,不可避免地会遇到这两个问题。

去重是刚需

在推荐系统中,有一个刚需就是去重,那么说在哪些地方有去重的需求呢?

【深度学习】深度学习在推荐系统中的应用有哪些_

时至今日,深度学习已经不是一个新名词了,由于它的出现,计算机视觉、自然语言理解等领域的从业者都过上了好日子,错误率大幅度降低。

尤其是那些不断号称端到端的建模方式,让还在埋头于特征工程的推荐系统从业者们跃跃欲试,想赶紧引入深度学习大显身手。

【深度学习】用RNN构建个性化音乐播单

时间是一个客观存在的物理属性,很多数据都有时间属性,只不过大多时候都把它忽略掉了。前面讲到的绝大多数推荐算法,也都没有考虑“用户在产品上作出任何行为”都是有时间先后的。

【团队篇】组建推荐团队及工程师的学习路径

如果你是老板,或者是公司里的推荐系统包工头,那么你一定会关心:要凑齐多少人才能开始搬砖?

一个推荐系统复杂度没有上限,但是有最低标准,所以下面在估算推荐系统团队规模时,按照下限来估计,照这个方式建立的团队就叫做“有下限的团队”。

【尾声】遇“荐”之后,江湖再见

好了,专栏终于写完了,所以我可以承认了:写专栏的过程还是很痛苦的。

如果要说整个过程中的一些感悟和心路,那就概括为三个“如”字吧。这三个“如”字,是三种痛苦,同时,也是三种收获。

【效果保证】道高一尺魔高一丈:推荐系统的攻防

毫无疑问,推荐系统是一种流量操控手段,所以其运转需要满足平台方的利益。

为了这个目的,推荐系统通过科学的手段建立起一套运转规则和逻辑,希望平台内的各方能够皆大欢喜,物品生产方能源源不断地生产物品,消费方能孜孜不倦地消费。

【效果保证】推荐系统的测试方法及常用指标介绍

当我们刚开始学习推荐系统的时候,我就希望你想清楚为什么要做推荐系统。在逐渐深入的过程中,我开始唠叨推荐系统的林林总总。

到了今天,假如你已经有了自己的推荐系统,这个系统已经上线,代替了以前绝大多数人工的工作,夜以继日地工作,为电商网站创造销售额,为信息流创造阅读时间和互动,为社交网站创造社交关系。